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Abstract 

Stenting is commonly used in the treatment of coronary 

artery disease. To optimize the results of the procedure, it 

is crucial to evaluate the stent immediately after its 

implantation, and then to later monitor how it becomes 

covered by the neointima. One modality used for this is 

intravascular optical coherence tomography (IVOCT). 

While the identification and assessment of stent struts in 

IVOCT images is routinely done in clinical practice, 

manual analysis remains laborious and time-consuming. 

To address this, automated algorithms for stent 

segmentation have recently been developed. However, 

these are mainly used for stents without thick tissue 

coverage. This study proposes a new computer-aided 

method to automate the detection of both covered and 

uncovered metal stent struts in OCT images. In general, 

the algorithm involves segmenting potential stent strut 

shadows, analyzing the distribution of pixel intensities in 

detected areas, and then classifying objects. 

 The algorithm has been validated on 606 cross-

sections chosen randomly from 34 cases containing 

pullbacks: at baseline and at 3-36-month follow-up. The 

presented algorithm achieves sensitivity of 88% and 

precision of 90% including in-stent restenosis cases. 

1. Introduction 

1.1. Background and clinical importance 

 Percutaneous coronary intervention (PCI) with stent 

implantation is the most common procedure for treating 

coronary artery disease. A stent is a tiny, expandable metal 

mesh coil that keeps the arterial lumen from narrowing or 

thrombosing. Once the stent is implanted, endothelial 

tissue starts to grow over it as part of the natural healing 

process. The stent is fully enclosed by tissue in 3-12 

months, depending on whether it has a coating (drug-

eluting stents, DES) or not (base metal stents, BMS) [1,2]. 

Once complete, stent struts should be covered by a 

properly-functioning neoendothelium. Unfortunately, this 

is not always the case. There are many factors that interfere 

with the healing process, resulting in late stent thrombosis 

or in-stent restenosis (ISR).  

 

Figure 1. Cross-sections in OCT right after stenting (a) and 

during the follow-up procedure with visible neointimal 

hyperplasia (NIH) (b). 

 Optical coherence tomography (OCT) enables high-

resolution visualization of the vessel wall and is 

particularly useful in assessing vessel healing, strut 

coverage, and stent apposition following implantation and 

on follow-up (Figure 1). It is crucial to monitor the 

behavior of the stent during the healing process. An 

automated algorithm was therefore developed and applied 

to quantitatively detect struts of implanted DES. 

1.2. State of the art 

 An intravascular OCT image sequence for a single 

patient usually contains hundreds of cross-sections 

depicting thousands of stent struts. It is time-consuming to 

perform a quantitative analysis of every scan manually. 

Therefore, various automated methods for stent assessment 

have been developed over the past two decades. To date, 

several different strategies for stent struts detection have 

been proposed. Most methods are based on the observation 
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that metal stent struts completely reflect light during the 

examination and, as a result, are represented in the OCT 

image as a group of high-intensity pixels followed by an 

elongated group of low-intensity pixels, called the strut 

shadow. Hence, for most articles, the analysis involves 

looking for areas of characteristically high intensity (struts) 

or low intensity (shadows). 

 IVOCT image analysis is usually performed on two-

dimensional cross sections of the vessel in polar or 

Cartesian coordinates. Stent strut segmentation algorithms 

described in the literature usually follow a scheme 

consisting of three main steps: 

1. Identify “candidates”, i.e., areas containing a 

possible stent strut. 

2. Extract features. 

3. Classify step 1 candidates based on parameters 

determined in step 2 to accurately distinguish 

stent struts from incorrectly segmented areas. 

 Following this scheme, different approaches have been 

attempted. The initial selection of potential strut locations 

is often done by looking for local extremes of intensity or 

gradient [3-6]. Other methods used at this stage include the 

continuous wavelet transform [7] or the 

eigendecomposition of the Hessian matrix [8]. Feature 

extraction of prespecified areas of interest usually involves 

determining the statistical parameters of the local intensity 

or gradient, or analyzing the location of struts on previous 

cross sections. The final step, which consists of classifying 

candidates in terms of the actual occurrence of struts, is 

usually performed by thresholding or using neural 

networks, among others [5,7]. However, not all methods 

proposed in the literature follow this sequence. For 

example, there are some studies in which stent struts were 

segmented directly by neural networks such as YOLO,  

R-FCN [9] or other deep convolutional models [10]. 

Although more than one method has been proposed, there 

are still unresolved issues in the area under discussion. 

Most of the described algorithms were unable to deal with 

struts covered by a thick layer of neointima, artifacts such 

as inaccurately diluted blood, or vessels with irregular 

lumen.  

 The purpose of this study is to showcase a new fully 

automated method for detecting metal stent struts on 

follow-up. 

 The paper is organized in five sections: Section 1 

presents the motivation behind our work and a review of 

the current state of stent strut detection. Section 2 provides 

an overview of the implemented algorithm, including OCT 

image preprocessing, lumen segmentation, and stent strut 

detection. Section 3 describes the statistical analysis 

performed and its results. Section 4 contains a discussion, 

and Section 5 closes the paper with a conclusion and 

highlights regarding future directions. 

2. Materials and methods 

2.1. Dataset 

For validating the algorithm, 34 IVOCT pullbacks (32 

different patients) were used. The data were acquired from 

the Department of Cardiology and Structural Heart 

Diseases at the Medical University of Silesia in Katowice, 

Poland (22 cases) and from the Regional Specialist 

Hospital in Wroclaw, Poland (12 scans) with a 

commercially available C-7 system using a 0.019-inch 

ImageWire (LightLab Imaging, Westford, MA). All scans 

presented a coronary artery fragment with an implanted 

metal stent. The analyzed dataset contained pullbacks: at 

baseline and at 3-36-month follow-up. The obtained 

images are of varying quality and contain artifacts, 

thrombi, bifurcations, in-stent restenosis and malapposed 

struts. The scans were stored in DICOM and AVI format.  

The proposed algorithm was tested using 606 cross 

sections randomly selected from all the 34 pullbacks. 

2.2. Proposed algorithm 

 The proposed method for detecting stent struts is 

likewise based on the scheme presented in Section 1.2. The 

algorithm consists of several key steps: preprocessing, 

segmentation of the vessel lumen, segmentation of 

potential stent strut shadows, and candidates analysis and 

classification. Except for lumen segmentation, which was 

realized as a macro in the ImageJ software (version 1.53c), 

the algorithm was implemented in Python 3.7. 

 

Figure 2. Flowchart of the proposed algorithm. 

 The purpose of preprocessing is to prepare the image 

for further analysis, where unnecessary information that 
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may disturb the algorithm is removed. In study, 

preprocessing includes cropping the image and removing 

the probe and markers that come from the OCT data 

acquisition software. All these operations are performed 

automatically. 

 The next step is vessel lumen segmentation via an 

algorithm based on binarization and active contour model. 

This method is described in detail in [11]. 

 The determined vessel lumen boundary is then used to 

create a ring-shaped mask that covers the vessel wall 

tissue. The thickness of the mask is adaptively determined 

based on the distribution of pixel intensity. Then, adaptive 

thresholding is performed in the red component of the 

image within the created mask to segment the shadows of 

the stent struts. To denoise the image and to smooth the 

objects, a series of morphological operations is performed.  

 

Figure 3. Fragment of the original image in polar 

coordinates (a), segmentation of the strut shadow (b), and 

intensity profile passing through the shadow (c,  d). 

Afterward, the image intensity profiles passing through 

each object are determined. Every profile is analyzed and, 

if it meets certain conditions, e.g., a peak exceeding a 

height threshold followed by a clear decrease in intensity, 

the object is considered a shadow of a stent strut and the 

peak in the profile is considered a point belonging to this 

strut (Figure 3). 

3. Results 

 The algorithm was manually evaluated by an expert. 

The results validation included determining the number of 

correctly detected struts (true positive, TP), the number of 

undetected struts (false negative, FN), and the number of 

places incorrectly marked as struts (false positive, FP) for 

each cross section individually. Then, based on the 

calculated values, sensitivity (S), precision (P), and Dice 

index were determined according to the following 

formulas: 

𝑆 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝐷𝑖𝑐𝑒 =
2 ∙ 𝑇𝑃

2 ∙ 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 

where: 

TP - number of true positives. 

FP - number of false positives. 

FN - number of false negatives. 

 After calculating the above metrics for each image 

separately, the median, first (Q1) and third quartile (Q3) 

values were determined. The final validation results are 

shown in Table 1. 

Table 1. Automatic detection efficiency. 

 Median (Q1-Q3) 

Dice index 0.87 (0.77-0.94) 

Sensitivity 0.88 (0.75-1.00) 

Precision 0.90 (0.80-1.00) 

4. Discussion 

 This study demonstrated that the proposed algorithm 

was 88% successful in detecting metal stent struts in OCT 

pullback taken just after implantation and at long-term 

follow-up, including cases with thick intimal hyperplasia.  

 Most studies presented in the literature review 

demonstrated similar results. However, the majority of 

those articles focused on stent analysis immediately after 

implantation and did not account for the proliferation of 

neointima or ISR, excluded cases with artifacts, or 

validated their algorithms on a poorly differentiated 

population.  

 Although the efficacy of the algorithm is satisfactory, 

there are some characteristics to the images that continue 

to pose a challenge. Figure 4 shows the results of a sample 

stent strut detection obtained using the proposed method. 

In addition to points where a strut was successfully 

detected, there are also cases where measurement was 

disturbed by residual blood artifacts or by too little contrast 

between the vessel wall tissue and the shadow. Detection 

can also be affected by a ghost strut. i.e., an artifact where 

the strut is multiplied in the shadow region. It also fails in 

cases where the strut or its shadow is not visible in the 

image. However, it should be noted that in such cases even 

experts have difficulties manually evaluating a stent. 

(a) 

(b) 

(c) 

(d) 

(a) (b) 

(c) (d) 
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Figure 4. Sample results of stent strut detected by the 

proposed algorithm. Images (a) and (b) show successful 

detection, while images (c) and (d) show partially failed 

detection. 

5.  Conclusions 

 The presented algorithm is effective in detecting stent 

struts in IVOCT scans obtained immediately after 

implantation, as well as in long-term follow-up, including 

in-stent restenosis, which is especially relevant to 

interventional cardiologists. This study focuses on DES 

and DES-ISR, which is more difficult to treat than BMS-

ISR due to its different morphology. OCT is especially 

useful in investigating the causes of accelerated intimal 

hyperplasia, e.g., malapposition or strut rupture. Moreover, 

it enables the assessment of neoatherosclerosis in the stent. 

 There have been many recent studies on algorithms to 

support the quantitative and qualitative analysis of stent 

healing. However, there is still a need to develop better and 

more accurate methods to support the diagnostic process. 

The next step in our study will be to refine the algorithm in 

order to increase its performance in cases that remain 

challenging, as described above. 
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